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Modularity, presumably shaped by evolutionary constraints, under-
lies the functionality of most complex networks ranged from social
to biological networks. However, it remains largely unknown in
human cortical networks. In a previous study, we demonstrated
a network of correlations of cortical thickness among specific
cortical areas and speculated that these correlations reflected an
underlying structural connectivity among those brain regions. Here,
we further investigated the intrinsic modular architecture of the
human brain network derived from cortical thickness measurement.
Modules were defined as groups of cortical regions that are
connected morphologically to achieve the maximum network
modularity. We show that the human cortical network is organized
into 6 topological modules that closely overlap known functional
domains such as auditory/language, strategic/executive, sensori-
motor, visual, and mnemonic processing. The identified structure-
based modular architecture may provide new insights into the
functionality of cortical regions and connections between structural
brain modules. This study provides the first report of modular
architecture of the structural network in the human brain using
cortical thickness measurements.
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Introduction

Modularity is one of the most important features of most

complex systems in nature, ranging from social to biological

networks (Hartwell et al. 1999; Newman 2006). Detecting

modules in a network may help us to identify relevant sub-

structures that correspond to important functions providing

a link between structure and function in complex networks

(Fortunato and Barthelemy 2007). In neuroscience, network

analysis has provided rich quantitative insights into the orga-

nization, development, and function of complex brain networks

(Sporns et al. 2004). Evidence from mammalian brain network

studies (Hilgetag et al. 2000; Zhou et al. 2006) has presupposed

potential modularity in the topology of the human cortical

network. However, defining and identifying structure-based

functional modules in the human cortical network has proved

to be challenging because of an incomplete understanding of

the structural--functional mapping and network of anatomical

connections linking the neuronal elements of the human brain

known as the human ‘‘connectome’’ (Sporns et al. 2005).

Currently, human cortical network research has been mainly

focused on functional connectivity patterns analysis using

neurophysiological data collected from functional magnetic

resonance imaging (fMRI) (Salvador et al. 2005; Achard et al.

2006; Achard and Bullmore 2007), electroencephalogram

(Micheloyannis et al. 2006; Stam et al. 2007), magnetoence-

phalogram (Stam 2004; Bassett et al. 2006). Accessible and

ubiquitous cortical morphometric data have been generally

overlooked and seldom studied in brain network analysis to

date. Recent studies have suggested that, at macroscale,

interregional statistical associations in cortical thickness (a

composite measurement of size, density, and arrangement of

cortical neurons, neuroglia, and nerve fibers) (Parent and

Carpenter 1995) reveal important structural connectivity

information in the human brain (Lerch et al. 2006; He, Chen,

et al. 2007). We have demonstrated, using a graph theoretical

network analysis (GRETNA) algorithm, that coordinated

variations in cortical thickness exhibit small-world attributes

characterized by cohesive neighborhoods with high clustering

and short mean distance between regions that reflect a near-

optimal organizational pattern of anatomical network in the

human brain. Such interregional correlations in cortical

thickness might arise from the interaction between underlying

neuronal substrates through their anatomical connections.

In the present study, we investigated the modularity of a

cortical network consisting of 45 regions and 102 significant

connections that was constructed in our previous study using

MRI data from 124 normal adults (He, Chen, et al. 2007). We

hypothesize that the connectivity pattern of morphological

variations in the thickness of cerebral cortex reveals an intrinsic

modularity wherein tight coupling within subgroups of cortical

regions (modules) within the overall network reflects the

functional organization of the brain. Finally, the topological

importance of specific cortical regions and paths are also

evaluated in terms of their contribution to network properties.

Materials and Methods

Subjects and MRI Acquisition
One hundred and twenty-four right-handed subjects (male/female =
71/53, 24.38 ± 4.25 y) were drawn from the International Consortium

for Brain Mapping database (Mazziotta et al. 2001). Each subject

provided written consent, and the study was approved by the Research

Ethics Committee of the Montreal Neurological Institute and Hospital.

The MRI scans were performed on a Philips Gyroscan 1.5T super-

conducting magnet system. T1, T2, and proton density images were

collected though only T1 images (1 mm isotropic, time repetition = 18

ms, time echo = 10 ms, flip angle = 30�) were analyzed in this study.

The detailed characteristics of the subjects and description of the

scanning sequences can be found in Watkins et al. 2001 and He, Chen,

et al. 2007.

Human Brain Structural Network Construction Using
Cortical Thickness
Images preprocessing procedures, cortical thickness measurements,

and cortical thickness network construction have been previously
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described (He, Chen, et al. 2007). In brief, to obtain the binarized and

undirected cortical thickness connectivity matrix as shown in Figure

1a, we computed the Pearson correlation coefficients (R) between

regional thicknesses across subjects and thresholded interregional

thickness matrix using a false discovery rate procedure (Genovese et al.

2002). The final human brain structural network derived from cortical

thickness measurements contains 45 connected cortical regions and

102 connections (Fig. 1a).

Network Modularity (Q)
The modularity measure Q(p) for a given partition p of the human brain

structural brain network is defined (Guimera and Sales-Pardo 2006;

Newman 2006) as

QðpÞ = +
N

s =1

�
ls

L
–

�
ds

2L

�2�
; ð1Þ

whereN is the number of modules, L is the number of connections in the

network, ls is the number of connections between nodes in module s,

and ds is the sumof the degrees of the nodes inmodule s. Themodularity,

Q, quantifies the difference between the actual number of intramodule

links and the expected number for the same modules in a randomized

network (Danon et al. 2006). The objective of a modular detection

algorithm is to find the partition p that maximizes this network

modularity Q as higher Q indicates a strong partition of the network

(Guimera and Sales-Pardo 2006). In practice, aQ value above 0.3 is a good

indicator of significant modules in a network (Clauset et al. 2004).

Figure 1. Identification of the functional modules in the human brain structural network. (a) (Top panel) The binarized matrix represents the human brain structural network
constructed using cortical thickness from MRI (He, Chen, et al. 2007). (Bottom panel) Each suprathreshold cell in the top panel represents 1 ‘‘link’’ in the brain network. (1,2) SFG,
(3,4) MFG, (5,6) IFG, (7,8) MdFG, (9,10) PrCG, (11,12) LOFG: lateral frontoorbital gyrus, (13,14) MOFG, (15,16) SPL, (17,18) SMG, (19,20) ANG: angular gyrus, (21,22) PCU:
precuneus gyrus, (23,24) PoCG, (25,26) STG, (27,28) MTG, (29,30) ITG: inferior temporal gyrus, (31,32) UNC: uncus, (33,34) MOTG: medial occipitotemporal gyrus, (35,36) LOTG,
(37,38) PHG: parahippocampal gyrus, (39,40) OP: occipital pole, (41,42) SOG: superior occipital gyrus, (43,44) MOG: middle occipital gyrus, (45,46) IOG: inferior occipital gyrus,
(47,48) CUN: cuneus, (49,50) LING, (51,52) CING: cingulate region, (53,54) INS: insula. (b) Progress of the network modularity, Q, as regions are merged into modules for the
human cortical network (blue) and 1000 random networks (dotted). Red down arrow indicates the cortical network modularity reaches maximum when the network is segmented
into 6 modules (Z score 5 7.9). The network modularity decreases as the merge continues indicating a less optimized network modular organization. (c) Dendrogram
representation of the modules identification progress determined by modularity (Q). The maximum Q is reached when the network is separated into 6 modules indicated by the
red up arrow.
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Network Modularity (Q) Optimization
To identify modules of the brain structural network (Fig. 1a) that

optimize the network modularity defined in equation (1), we

implement a greedy optimization algorithm (Danon et al. 2006). The

algorithm is based on Newman’s fast algorithm (Clauset et al. 2004;

Newman 2004) that is similar to the standard agglomerative hierarchi-

cal clustering technique.

We first start with a state in which each cortical region (node) in the

human brain structural network (Fig. 1a) is the solemember of a module

i. Hence, the initial network modularity Q can be computed as

Q = +
i

�
eii –a

2
i

�
; ð2Þ

where:eii (0 initially) is the fraction of all edges that connect vertices

within module i, ai is the proportion of links belonging to module i

(degree of module i) over total number of network links.

An initial modularity matrix is then constructed from equation (2) as

DQij =

�
2
�
eij –aiaj

�
; ifi ; j are connected;

0; otherwise;
ð3Þ

where eij is the fraction of edges in the network that connect vertices

in module i to those in module j which is 1 over the total number of

network links if i and j are connected initially. ai and aj are denoted as

the proportion of links belonging to the module i and j which is the

degree of modules (nodes) i and j over total number of network links,

respectively. This is a measurement of affinity between modules i and j

as the higher DQij becomes, the more likely modules i and j belong to

the same module.

The algorithm joins modules together in pairs choosing at each step

the pairing that results in the greatest increase in Q determined by

a normalized DQij , (Danon et al. 2006):

DQij =
2

ai

�
eij –aiaj

�
: ð4Þ

This normalization insures that clusters with fewer links have largest

values of DQij , and therefore are joined earlier (Danon et al. 2006). The

advantage of this optimization approach is that it takes into account of

the heterogeneity of module size observed in real networks (Danon

et al. 2006). The algorithm stops the modules joining process when

DQij , become negative because the agglomeration is no longer

contributing to the optimization of the network modularity.

Statistical Significance
The nontrivial distributions of the cortical network also raise the

question as to whether the observed maximum network modularity is

statistically significant compared with that of comparable random

graphs. In other words, what happens with the modularity of the

cortical network if the links of the network are randomly reorganized?

To address this issue, random graphs were generated that preserved

the degree distribution of the real network (Maslov and Sneppen 2002).

We defined Z score as (Qreal – Qrand)/Qstd, where Qreal is the maximum

modularity of the cortical network and Qrand and Qstd are the average

maximum modularity and standard deviations of the maximum

modularity over 1000 randomized networks, respectively.

Node and Edge Betweenness Centrality
The concept of betweenness centrality is a powerful tool in identifying

pivotal nodes and edges, with respect to information flow, within

a network (Freeman 1977; Girvan and Newman 2002). The between-

ness of a node N bc(v) is defined as the number of shortest paths

between pairs of other nodes that pass through the node.

N bcðvÞ = +
s 6¼v 6¼t2V

rst ðvÞ
rst

; ð5Þ

where V is the set of nodes in the network, rst is the number of

shortest geodesic paths from s to t, and rst(v) is the number of shortest

geodesic paths from vertex s to vertex t that pass through the vertex v.

The relative betweennness centrality of a node is its centrality divided

by the maximum node centrality of the network.

In an analogous manner, the betweenness of an edge E bc({k,k’}) is

defined as the number of shortest paths between pairs of other nodes

that pass through the edge.

E bcðfk;k’gÞ = +
s 6¼ t 2 V ;
fs; tg 6¼ fk;k’g

rst
�n

k;k’
o	

rst
; ð6Þ

where V is the group of vertices in the network, rst is the number of

shortest geodesic paths from s to t, and rst({k,k’}) is the number of

shortest geodesic paths from vertex s to vertex t that pass through the

edge {k,k’}. The relative betweennness centrality of an edge is its

centrality divided by the maximum edge centrality of the network.

The relative betweenness centrality of nodes and edges in this study

are measured using MatlabBGL v2.1 (http://www.stanford.edu/~
dgleich/programs/matlab_bgl/).

Results

Cortical Network Modularity

Based on our previous study in the small-world attributes (high

clustering coefficient and short mean path lengths) of the

structural brain network (He, Chen, et al. 2007), we hypoth-

esized that the high clustering is also an indication of a potential

high modularity (Q) (Newman 2006). The objective of module

detection is to find the partitions that maximize the brain net-

work modularity Q (see Materials and Methods). The module

detection algorithm was applied directly on the binarized

structural brain network constructed from cortical thickness

measurements (He, Chen, et al. 2007) as shown in Figure 1a.

Figure 1b demonstrated the progress of Q as regions are

merged into modules for the human cortical network (blue

line) and 1000 matched random networks (dotted line). Figure

1c is the dendrogram representation of the modules identifi-

cation progress along with the modularity (Q) measurements.

The maximum modularity (Q = 0.5, Zscore = 7.9) was reached

when the cortical network was separated into 6 modules

indicated by the red arrows (Fig. 1b,c). The statistically

significant modularity of the cortical network implies that the

underlying modular architecture arises from specific interac-

tions among cortical regions.

Functional Significance of Network Modules

We referred to cortical network modules as groups of cortical

regions that are both connected morphologically and subserv-

ing distinct brain functions such as language, motor, and visual

functions. Each module in a network should have denser intra-

module connections than its intermodule connections. The

identification of modules of connected regions (based entirely

upon correlations of regional cortical thickness) was quantified

by modularity (Newman 2006) and obtained without any prior

knowledge of regional functions. Six structure-based modules,

consisted of 4--10 cortical regions, were identified at the

maximum network modularity (Danon et al. 2006) (Fig. 2).

Modules were labeled from I to VI as shown in Figure 1 and

Figure 2. Module I (red) consists of 9 regions mostly from

prefrontal areas such as bilateral superior frontal gyrus (SFG),

middle frontal gyrus (MFG), and medial frontal gyrus (MdFG)

that are known to be primarily involved in strategic/executive

functions (Duncan and Owen 2000). The 10-region module II

(orange) found in the network includes regions mostly from

(pre)motor and parietal cortices such as left precentral gyrus

(PrCG), bilateral superior parietal lobule (SPL), angular gyrus,

and postcentral gyrus (PoCG) that are mainly associated with

sensorimotor/spatial functions (Mesulam 2000). The other 10-

region module V (yellow) includes bilateral supramarginal
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gyrus (SMG), middle temporal gyrus (MTG), superior temporal

gyrus (STG), and inferior frontal gyrus (IFG), all of which can be

associated with auditory/language functions (Mesulam 1990).

Module VI (green) is composed of 5 regions from the occipital

lobe that are specialized for visual processing. The 4-member

module III (pink) includes bilateral lateral frontoorbital gyrus

and inferior temporal gyrus that are connected through the

uncinate fasciculus (Kier et al. 2004) and could also be part of

olfactocentric system (Mesulam 1985). Module IV (blue)

includes regions such as bilateral parahippocampal gyrus, pre-

cuneus, and medial occipitotemporal gyrus that are associated

with mnemonic and emotion processing (Mesulam 1990;

Cavanna and Trimble 2006).

There were also some functionally less studied cortical

regions within each module. For example, both left lateral

occipitotemporal gyrus (LOTG) and right lingual gyrus (LING)

are found in the auditory/language module V as both regions

are linked to the phonological analysis of speech, an essential

component of language processing for mapping sound informa-

tion onto higher levels of language process (Burton et al. 2005).

On the other hand, a recent fMRI study has revealed significant

activation in the right LOTG (module II) in detecting motion,

object form, and human body form (Downing et al. 2007).

Isenberg et al. (1999) proposed that left LING (module IV) is

modulated by the amygdala along with parahippocampal region

to subserve enhanced semantic encoding. Although a unique

functionality for each cortical region is difficult to define and

can be ambiguous at times, the results nevertheless demon-

strate strong connections among cortical regions within each

module of the human brain structural network.

Nodes Betweenness Centrality

We calculated the relative nodal betweenness centrality (N bc)

of each region in the cortical network (mean = 0.173). Cortical

regions with high N bc are important in managing the flow of

information across the network because they are more likely to

reside on the shortest path between other regions. The relative

N bc of each region is represented by the size of each circle in

Figure 2, and the associations between N bc of each cortical

region and its intermodular connections are shown in Table 1.

We found that regions with high N bc ( >0.173) are pre-

dominately intermodular connectors located in the regions of

the parietal, temporal, and frontal heteromodal association

cortex (SPL, SMG, MTG, STG, IFG, and SFG) (Mesulam 2000)

and highly connected primary motor cortex (PrCG) (Luppino

and Rizzolatti 2000).

Edges Betweenness Centrality

Similar to the N bc, edge betweenness centrality (E bc)

identifies critical paths in the brain structural network.

Figure 2. Modular architecture of the human cortical network. Six modules of human cortical network displayed in groups. Red: module I, orange: module II, pink: module III,
blue: module IV, yellow: module V, green: module VI. The intermodular connections and intramodular connections of the network are shown in dark and gray lines, respectively.
The size of each node denotes the relative betweenness centrality (N bc) of the cortical region in the brain network (for details, see Table 1).
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Network paths with high E bc are more likely to reside on the

shortest path between any 2 regions. Table 2 demonstrated the

top 15 ranked connections (see Supplementary Table for a full

list of the paths). We found that paths with high E bc are more

likely to be intermodular connections (10/15; 67%) that

connect regions with high N bc indicated in previous section

(e.g., PrCG, MTG, SPL, and SFG) despite majority of paths

(72/102; 71%) are intramodular connections. In addition, we

also observed some intramodular paths with high E bc actually

connect high N bc regions with low N bc ( <0.173) regions such
as the MTG.L--SMG.L and PrCG.L--cingulate region (CING.L)

links (Table 2).

Discussion

This is the first study to demonstrate the modular architecture

of the large-scale structural connectivity patterns in the entire

human cerebral cortex using cortical thickness measurements.

The segregation of brain regions into 6 modules with functional

significance suggests that functional organization of human

brain networks has a modularized anatomical consequence. In

addition, we also showed that cortical regions and paths with

high betweenness centrality are most likely to be the inter-

modular connectors and connections, respectively. Taken

together, our results provide a detailed view of modular

organization of the human brain structural network.

Modular Architecture of the Human Brain Structural
Network

We have proposed a modular architecture for the human brain

structural network that is composed of groups of tightly

connected cortical regions. This analysis is based on our

previous findings of small-world network properties (high

clustering and short mean paths length between nodes) in the

human brain structural network using cortical thickness (He,

Chen, et al. 2007). High clustering represents a general organi-

zational principle throughout many large-scale brain networks

(Sporns et al. 2004) and may contribute to the balance between

brain functional segregation and integration while conserving

connections length (Sporns et al. 2000), efficient recurrent

processing within modules (Sporns et al. 2000; Kotter and

Stephan 2003), and efficient information exchange between

modules (Latora and Marchiori 2001). Prior studies in the

mammalian and human brain networks have revealed clusters

that closely overlap with known brain functions (Hilgetag et al.

2000; Salvador et al. 2005; Zhou et al. 2006). Consistent with

these principles, the organization of the human structural brain

network shown here reflects an intrinsic modularity of the

functional organization of the brain.

We identified 6 modules in the human brain structural

network corresponding to 6 general brain functional domains

(see Results). Those results are compatible with functional

Table 1
Regions of human brain cortical network and their associated modules sorted in the order of

decreasing betweeness centrality

Abbreviation Class Nbc(V) Module Module No. (regions)

PrCG.R Primary 1.000 II I(1,10), IV(21,33,50), V(28)
MTG.L Association 0.667 V II(9), III(29)
SPL.R Association 0.555 II IV(33,37,38), VI(41)
PrCG.L Primary 0.504 I II(9,35), V(27)
SFG.R Association 0.455 I II(9,23,24), IV(38,50)
MOFG.L Paralimbic 0.366 II III(12)
IFG.L Association 0.354 V I(3,4), VI(39,42)
SPL.L Association 0.346 II IV(21), VI(42)
MTG.R Association 0.329 V I(10)
PHG.L Paralimbic 0.281 IV I(1), II(15), VI(40)
SOG.L Association 0.280 VI II(16), V(5,6)
LOFG.L Paralimbic 0.239 III II(14)
MOTG.R Association 0.204 IV I(8), II(9,15)
STG.R Association 0.196 V N/A
OP.R Primary 0.183 VI V(6)
SMG.R Association 0.174 V N/A
PHG.R Paralimbic 0.168 IV II(15)
CING.L Association 0.165 I N/A
SMG.L Association 0.150 V N/A
MFG.R Association 0.142 I II(24), V(5,6)
IFG.R Association 0.140 V I(3,4), VI(42)
OP.L Primary 0.140 VI IV(38)
MFG.L Association 0.127 I V(5,6)
ITG.R Association 0.114 III V(28)
PCU.R Paralimbic 0.095 IV II(9,16)
PoCG.L Primary 0.089 II I(1,3)
PoCG.R Primary 0.053 II I(1)
LOTG.R Association 0.050 II I(10)
ITG.L Association 0.039 III N/A
STG.L Association 0.037 V N/A
SFG.L Association 0.034 I N/A
ANG.R Association 0.034 II N/A
MdFG.L Association 0.032 I IV(33)
SOG.R Association 0.020 VI II(15)
MdFG.R Association 0.013 I N/A
ANG.L Association 0.008 II N/A
LING.L Association 0.005 IV I(1), II(9)
LOFG.R Paralimbic 0.000 III N/A
MOFG.R Paralimbic 0.000 I N/A
PCU.L Paralimbic 0.000 IV N/A
MOTG.L Association 0.000 IV N/A
LOTG.L Association 0.000 V N/A
IOG.R Association 0.000 VI N/A
CUN.R Association 0.000 II N/A
LING.R Association 0.000 V N/A

Cortical regions with intermodular connections (shaded) in the human brain structural network

were identified from their modular organization and sorted in order of decreasing relative node

betweenness Nbc (see Fig. 1 for the abbreviations). Regions with higher than mean network

betweenness centrality (0.173) are also identified (in bold). All regions were classified as primary,

associations, and paralimibic as described in He, Chen, et al., 2007. The module classification of

each region (I--VI) is according to Figure 2. The intermodular connections associated with each

cortical region are listed in the last column as module no. where numbers in brackets represent

the other cortical regions that connect to that region (see Fig. 1 for the region names). R, right; L,

left; PHG, parahippocampal gyrus; SOG, superior occipital gyrus; LOFG, lateral frontoorbital gyrus;

MOTG, medial occipitotemporal gyrus; OP, occipital pole; CING, cingulate region; ITG, inferior

temporal gyrus; ANG, angular gyrus; IOG, inferior occipital gyrus; CUN, cuneus.

Table 2
The top 15 ranked cortical network paths in betweenness centrality and their connected modules

Region A Region B Ebc({k,k‘}) Modules

PrCG.R MTG.L 1.000 II--V
LOFG.L MOFG.L 0.590 II--III
PrCG.L CING.L 0.539 I
PrCG.R MOFG.L 0.512 II
SMG.L MTG.L 0.445 V
MTG.L ITG.R 0.438 V--III
PrCG.R SPL.R 0.405 II
SPL.L SOG.L 0.405 II--VI
PrCG.L MTG.R 0.400 I--V
IFG.L OP.R 0.370 V--VI
PrCG.R PrCG.L 0.366 II--I
PrCG.R MOTG.R 0.336 II--IV
PHG.L OP.L 0.314 IV--VI
SFG.R PHG.L 0.313 I--IV
SMG.R STG.R 0.295 V

List of the top 15 ranked paths with a network edge betweenness centrality greater than the

mean (0.186) are identified and listed in order of decreasing relative edge betweenness Ebc (see

Fig. 1 for the abbreviations and Supplementary Table for the full list) in the human brain structural

network. Modules column shows the 2 cortical network modules that each path (intermodular

connection) is connected to or the module that each path (intramodular connection) belongs to.

R, right; L, left; LOFG, lateral frontoorbital gyrus; CING, cingulate region; ITG, inferior temporal

gyrus; SOG, superior occipital gyrus; OP, occipital pole; MOTG, medial occipitotemporal gyrus;

PHG, parahippocampal gyrus.
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modules detected in the mammalian anatomical network

(visual, auditory, somatorsensory/motor, frontal/limbic) (Scan-

nell et al. 1995; Scannell et al. 1999; Hilgetag et al. 2000).

However, one distinctive difference between the human and

mammalian cortical structural networks is the appearance of

strong language module (V) in the human cortical network,

which supports the notion that language ability is what sets us

apart from other animals (Lieberman 1998). Our findings might

provide a structural basis for the differences in the functional

organization of the human and mammalian brain networks.

The modular architecture of human brain structural network

is also consistent with the functional network of human brain.

A recent fMRI study has suggested that, in the resting state, the

functional architecture of the normal human brain displays

a similar modular pattern (spatial/motor, executive, visual,

auditory--verbal, paralimbic) (Salvador et al. 2005). However,

our study provides the first evidence of a modularized struc-

tural organization underlying the functional connectivity

pattern of the human brain network.

The GRETNA above also demonstrated that the modular

architecture of the human structural network is comparable to

functional correlations between most bilaterally homologous

regions (e.g., SFG, STG, SMG, PoCG, etc.) as they are con-

sistently grouped together in the same module (Fig. 2 and

Table 1). Previous human brain functional studies have

demonstrated strong functional correlations between bilater-

ally homologous regions (Lowe et al. 1998; Hampson et al.

2002; Wang et al. 2006) and a similar symmetric clustering

connectivity pattern (Salvador et al. 2005), presumably resulted

from the interhemispheric callosal connections. A recent study

showed significant correlations between bilateral regional gray

matter density (Mechelli et al. 2005). One exceptional

observation concerns the PrCG regions that are found in

different modules (left: I; right: II). However, the functional and

structural asymmetries of the primary motor cortex was well

documented (Amunts et al. 1996) and found to be related to

a hemispheric asymmetry in motor control (left: regulation of

motor behavior; right: spatial functions) (Serrien et al. 2006).

The assignment of functionally annotated cortical regions

to their corresponding modules in our results is consistent

with well-known brain functional systems. Thus, the network

modules identified provide a functional anatomy for different

cortical regions including areas with less defined functions and

asymmetrically categorized. The structural description of the

cortical network elements might provide new insights into the

understanding of how brain functions emerge from their

underlying structural substrates (Sporns et al. 2005). Though,

further experimental and analyses are needed to understand

the role of each cortical region within its module.

We also examined the topological importance of cortical

regions and connections that are vital in linking different

functions in the brain network. We observed that cortical re-

gions with multimodal functions tend to have high nodal

centrality (N bc) and are predominantly intermodular connec-

tors. Those cortical regions are consistent with the hub regions

defined in previous human brain functional networks (Achard

et al. 2006) and a structural network (He, Chen, et al. 2007). On

the other hand, intermodular connections tend to have higher

edge centrality (E bc) and connect cortical regions with high

N bc. The overlap between these 2 observations is not

surprising given the fact that both modular connectors and

intermodular connections are more likely to reside on the

shortest paths between any 2 regions that are in different

functional modules. However, the E bc statistic also reveals vital

intramodular paths between a highN bc node and a relatively low

N bc node, for example, MTG.L--SMG.L and PrCG.L--CING.L links,

a finding that suggests that E bc might be able to provide a more

detailed evaluation on the importance of a node in the network.

The identification of critical inter- and intramodular cortical

regions and connections allows us to identify the structural

bottlenecks and preferred pathways that constrain the flow of

activity in specific patterns, contributing critically to network

functional expression and coordination dynamics (Bressler and

Tognoli 2006). The modular architecture of the cortical net-

work might provide a functional explanation as to why changes

in the core paths (high E bc) and hub regions (high N bc) have

more profound effects on the stability and efficiency of the brain

network than the noncore paths and nonhub regions (Kaiser

and Hilgetag 2004; Achard et al. 2006; He, Chen, et al. 2007).

Several methodological considerations need to be addressed.

First, we used interregional cortical thickness correlations to

represent the human brain structural network. The exact

biological nature of the cortical thickness correlations is still

unknown, though it has been suggested that regional morpho-

logical covariations such as brain tissue volume may be attrib-

uted to the mutually trophic influences (Ferrer et al. 1995), the

contribution of heredity (Suddath et al. 1990; Steinmetz et al.

1994; Thompson et al. 2001), or environment-related plasticity

(Maguire et al. 2000; Draganski et al. 2004; Mechelli et al. 2004).

Although not answering the question of what caused these

cortical correlation patterns, GRETNA provides a framework for

human brain structural organization (He, Chen, et al. 2007) that

reflects functional neuroanatomy. Second, numerous module

detection algorithms have been developed, and different algo-

rithms could yield different results. However, we compared our

results with those obtained with a simulated annealing approach

(Guimera and Nunes Amaral 2005) and found minimal differ-

ence in modular categorization with the only exception in the

module assignment of IFG. Hence, the uncovered network mod-

ules appear to be robust. Third, cortical regions in our study are

defined by a prior volumetric template that was employed to

automatically parcellate the entire cerebral cortex into different

regions (Collins et al. 1995). A different cortical parcellation tem-

plate was applied in recent human brain functional network

studies (Salvador et al. 2005; Achard et al. 2006; Achard and

Bullmore 2007). The use of different parcellation schemesmight

cause subtle change of network organization, though the essen-

tial modular architecture for any cortical parcellation based on

commonly accepted gyral/lobar boundaries should remain intact.

Further investigations will include examining the brain

structural network modularity using other cortical morpholog-

ical features such as local area, volume, or complexity. In future

applications, it will be important to investigate how the roles of

different modules differ in various settings such as develop-

ment (Shaw et al. 2006), aging (Sowell et al. 2003), dementia

(Desgranges et al. 1998; Buckner et al. 2005; He, Wang, et al.

2007), learning (Draganski et al. 2004), rehabilitation (Han et al.

2007), and psychiatric disorders of connectivity (Honey et al.

1999; Buchanan et al. 2004).

Conclusion

By exploring a rich and static cortical morphormetric database,

we found patterns of morphological variation in thickness
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across the cortical surface that might be associated with the

intrinsic functional modularity of the brain network. This is

probably due to the fact that cortical thickness and its inter-

regional correlations may reflect the underlying cytoarchitec-

ture and neural connectivity. Analysis of correlation patterns of

the cortical structure may thus provide unique and valuable

insight into the understanding of the normal cerebral de-

velopment and cortical abnormalities in various neuropsychiat-

ric disorders. Furthermore, the underlyingmodular organization,

postulated to result from the evolutionary constraints, may

reflect the fundamental design principles governing the struc-

ture and function of the human brain.

Supplementary Material

Supplementary material can be found at: http://www.cercor.

oxfordjournals.org/
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